IBM Zurich Research Laboratory

Building a Smarter Energy Future

Patrick Ruch and Bruno Michel Science and Technology Department, IBM Research – Zurich

Smart Energy Day 14th December 2010 École Polytechnique Fédérale de Lausanne

billion transistors per human 2 billion people on the web

> Almost everything can become digitally aware and interconnected

8.4 Gt CO₂ from fossil fuel burning each year At least 11 minerals are past peak production

Our impact on the Earth's climate and resources is unprecedented Energy consumption up 44% from 2006 to 2030 67% of electrical energy never reaches customer

Our energy system must be transformed to meet the needs of the future

Water scarcity for every other human in 2030 22% of freshwater use is industrial

Energy consumption severely impacts water availability

Building a Smarter Energy Future

Computing for energy
Energy in computing
Energy for computing

Computing for energy

Energy and utilities

TRADITIONAL TRANSFORMED **ENERGY VALUE CHAIN ENERGY VALUE CHAIN** Solar Energy Storage **Coal/Natural Gas** Utility C С Hydroelectric Nuclear Utility Wind **Coal/Natural Gas Energy Storage** Hydroelectric Nuclear С С Solar Wind Solar Energy Storage С С Plug-in Vehicle С С Wind Consumer C Power Flow Periodic Information Flow **Continuous Information Flow**

Drives transformation of policy and business models

Energy and utilities

Pacific Northwest Smart Grid: regional demonstration

Occupancy Modes

- Appliances, meters and sensors adjust consumption dynamically based on usage and preferences with dynamic pricing
- Average electricity bill reduction by 10%
- Reduced short-term peak distribution loads by 50%, overall peak loads by 15%
- Projected reduction in infrastructure spending of 70 \$M
- Reduced impact of power shortages

EDISON

<u>Electric vehicles in a distributed and integrated market</u> using sustainable energy and open network

- Challenge: Maintain security of supply in an electric grid which incorporates a large fraction of fluctuating renewable energy and electric vehicles (EVs)
- Grid-connected EVs represent both a huge challenge and storage/regulation potential
- Develop management system for charging and storage
- Simulate behavior of a large EV fleet

EURISCO SIEMENS DONG OSTKRAFT DIV

EDISON

Grid connection at public or shared stations

Source: http://www.flickr.com/photos/ibm_research_zurich/4882647022/in/set-72157622238483748/

EcoGridEU

Large scale smart grid demonstration of real time market-based integration of distributed energy resources and demand-response

	-
SINTEF ER	Norway
Energinet	Denmark
Østkraft	Denmark
DTU-CET	Denmark
Siemens	Germany
IBM	Switzerland
EnCT	Germany
ELIA	Belgium
LaBein	Spain
AIT	Austria
ECN	Netherlands
EANDIS	Belgium
TUT	Estonia
ORES	Belgium
	SINTEF ER Energinet Østkraft DTU-CET Siemens IBM EnCT ELIA LaBein AIT ECN EANDIS TUT ORES

Building a Smarter Energy Future

- 1. Computing for energy
- 2. Energy in computing
- 3. Energy for computing

Energy in computing

Worldwide energy consumption of datacenters

Cost to power and cool server installed base (\$B)

→ Installed base (M)

Green IT requires...

...real solutions

IDC, Market Analysis (2008)

Energy in computing

Power and heat: impact over multiple length scales

Smarter energy in computing

- Low-power transistors
- Measurement & Management Technologies
- Zero-emission datacenter

Datacenter

Low-power transistors

- Project STEEPER (EU FP7-ICT) coordinated by Prof. Ionescu, EPFL
- Develop low-power transistors and circuits working below 0.5 V
- Steep sub-threshold slope transistors
- Reduce power consumption by one order of magnitude

Nowak, IBM Journal of R&D 46 (2002) 169

Energy in computing

Energy partitioning in datacenters

- 1 W of IT power requires 0.5–1 W of cooling
- Need to measure datacenter cooling
- Need to improve datacenter cooling

Measurement & Management Technologies

Data collection via mobile platform or real-time sensor network

Measure

Model

 Capture high resolution temperature data, air flow data and infrastructure & layout data

 To identify improvement opportunities model the data center and use optimization algorithms ("best practices rules")

3

Manage "Best Practices"

- Realize air transport energy savings
- Realize thermodynamic energy savings
- → Achieve reduced energy consumption
- → Potential for deferring new investments

MMT 3D datacenter profiling

- 30 000 thermal readings
- 3000 humidity readings
- 200 air flow readings

Energy partitioning in datacenters

Minimization of thermal resistances

Brunschwiler et al., IBM J. Res. & Dev. 53 (2009) 11; Meijer, Science 328 (2010) 318; Escher et al., Int. J. Heat Fluid Flow 31 (2010) 586

Building a Smarter Energy Future | December 14, 2010 | Smart Energy Day, EPFL | ruc@zurich.ibm.com

Minimization of thermal resistances in liquid water cooling

Example 1

Example 2

Jet-impingement cooling 35 mm nozzle diameter

Lateral fluid distribution

Very low pressure drop

Ultra-thin form factor

Biological vascular system Hierarchical structure Optimized for mass transport

 \rightarrow Microchannels (short heat flow paths) \rightarrow Facile mass transport (low pumping power)

Brunschwiler et al., ITHERM (2006); Escher et al., Int. J. Heat Fluid Flow 31 (2010) 586

Building a Smarter Energy Future | December 14, 2010 | Smart Energy Day, EPFL | ruc@zurich.ibm.com

Zero-emission concept: waste heat reuse

Processors should not reach more than 85°C.

1. MICRO CHANNELS

High performance microchannel coolers are attached directly to the backside of the processor. In the cooler, water is distributed by a network of very fine channels for efficient heat removal.

2. HEAT EXCHANGER

The heat removed from the data center is delivered to a second circuit.

Water pump

3. DIRECT REUSE OF WASTE HEAT

The heat removed from the data center can directly be repurposed for a second usage, e.g. for heating of buildings.

Under-floor heating

CHIP COOLING

Heating power Today's chips dissipate 10 times the heat of a typical hotplate. For optimal operation, chips must be cooled below 85°C

Source: IBM Zurich Research Laboratory

Hot-water cooled prototype at ETH Zurich

Modified >80% heat recuperation blade servers Feed-in to ETH heating system Record 7.9 TFLOP/gCO₂ **HS22 QS22** Air-cooled BladeCenter chassis Water-cooled BladeCenter chassis Modified chassis Air-cooling module Water-cooling module

Datacenters embedded in district heating and cooling grids

- Novel placement of datacenters in the energy landscape
- Change from pure energy consumers to participants in a distributed and interconnected energy grid
- Improvements in heat-driven cooling technology are being driven by IBM

Green computing at IBM

Green500 (November 2010)

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype	38.80
2	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	1243.80
3	933.06	NCSA	Hybrid Cluster Core i3 2.93Ghz Dual Core, NVIDIA C2050, Infiniband	36.00
4	828.67	RIKEN Advanced Institute for Computational Science	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	57.96
<u>5</u>	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D -Torus	57.54
5	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D -Torus	57.54
<u>5</u>	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D -Torus	57.54
8	740.78	Universitaet Frankfurt	Supermicro Cluster, QC Opteron 2.1 GHz, ATI Radeon GPU, Infiniband	385.00
9	677.12	Georgia Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5660 2.8Ghz, nVidia Fermi, Infiniband QDR	94.40
<u>10</u>	636.36	National Institute for Environmental Studies	GOSAT Research Computation Facility, nvidia	117.15

* Performance data obtained from publicly available sources including TOP500

- IBM has built **15 of the top 25** most energy-efficient supercomputers
- Hot-water cooling features in planned 3 PFLOPS system in Leibniz Supercomputing Center, Germany (press release December 13, 2010)

Building a Smarter Energy Future

- 1. Computing for energy
- 2. Energy in computing
- 3. Energy for computing

Energy for computing

Smarter energy for computing

- Concentrated photovoltaics with heat reuse
- Energy storage in lithium-air battery

CPV with heat reuse for desalination

Photovoltaic contribution to future electricity generation

- 26% share of electricity generation in 2040 requires 9000 km² collector area
- Annual crystalline silicon production of semiconductor industry: 1 km²
- Photovoltaic efficiency: 10–20% for Si, 40% for multi-junction cells
- Optical concentration decreases active area and cost
- Peak heat flux in CPV: 100 W/cm² at 1000x concentration

CPV with heat reuse for desalination

- Highly efficient module packaging for heat recovery
- Design of concentrator optics
- Coupling to thermal desalination system
- Joint development with Egypt Nanotechnology Center (EGNC)

Building a Smarter Energy Future | December 14, 2010 | Smart Energy Day, EPFL | ruc@zurich.ibm.com

Energy storage: the lithium-air battery

Toward the lithium-air battery

- Increasing electrification of traffic is a crucial infrastructure change in the 21st century
- IBM Research is developing a large-scale lithiumair battery for electric cars
- Usable specific energy of 1500 Wh/kg (comparable to usable specific energy of gasoline)
- High risk / high reward, long horizon project
- Joint research effort with National Labs and commercial partners

Li-air Cell Constant load / No load

IBM Research – Almaden: Battery 500

Summary

- 1. Computing for energy
- 2. Energy in computing
- 3. Energy for computing

IBM Research drives innovation and development for future energy systems through internal efforts and joint collaborations

Acknowledgments

IBM Research – Zurich	I. Meijer, S. Zimmermann, S. Paredes, T. Brunschwiler, W. Escher, M. Müller, J. Ong, R. Ghannam, A. Khalil, D. Gantenbein, B. Jansen, C. Binding, O. Sundström, P. Chevillat, T. Scherer, H. Riel, M. Oestreicher, T. Kramp
Project support for IBM Research – Zurich	EGNC, KTI, FOAK, CCEM
	NanoTera (CMOSAIC, see talk of D. Atienza)
IBM Research – Yorktown	H. Hamann, J. Kephart, V. Lopez, H. Li
IBM Germany R&D	J. Marschall, M. Ries, W. Weber, M. Bachmeier, M. Kirschner, G. Goldrian
IBM Switzerland	B. Battaglia
ETH Zurich	D. Poulikakos
EPF Lausanne	J. Thome, A. Ionescu, D. Atienza, Y. Leblebici
Industry partners	Walter Meier AG Wolverine Tube Inc. APC by Schneider

IBM Research Smarter Energy Community D. Gil

IBM Zurich Research Laboratory

Building a Smarter Energy Future

Patrick Ruch and Bruno Michel Science and Technology Department, IBM Research – Zurich

Smart Energy Day 14th December 2010 École Polytechnique Fédérale de Lausanne

